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SUMMARY 

A model of the flow through a helicopter rotor, 
suitable for estimating shed wake effects in hovering and 
at low tip speed ratios,  is described.    The method leads to 
the same result for the aerodynamic damping of blade bending 
oscillations as more complex theories.     It is shown that the 
damping of small natural oscillations  is  to a first order 
unaffected by tip  speed ratio.    Interharmonic couplings, 
arising out of the convection of the shed vorticity parallel 
to  the rotor disc,  prove to be quite important,  especially 
if    retonance occurs.    Also,  in the presence of strong  inter- 
harmonic coupling,  the effective lift curve slope cannot be 
considered as a universal parameter,  independent of the har- 
monic content of the blade motion. 
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I.    INTRODUCTION 

One of the problems in the calculation of the 

response of rotor blades to the various forms of excitation 

which arise, is to assess the importance of the 'non-steady 

aerodynamic effects'.  By this is almost universally meant 

the shedding of spanwise vortices from the trailing edge 

of a blade whose incidence is varying with time, although 

it really has a wider connotation. The shed wake has an 

effect on rotor blade oscillations which is an order of 

magnitude greater than its effect on the oscillations of 

fixed wings. Basically this is because the wake does not 

move much, relative to the disc, in the time taken for the 

next blade to occupy the position which one blade has at 

a given instant. Also the blade natural frequencies vary 

with rotational speed, so that in hovering flight the op- 

portunity may occur for shed vorticity of the appropriate 

sign and phase to accumulate underneath, and close to, the 

rotor, with the result that the aerodynamic damping of flexural 

oscillations can become very small.   '  ' But in forward 

flight the shed vortices are convected away from the disc, 

and their axes are no longer parallel to tin trailing edges 

of successive blades.  They therefore cannot accumulate in 

quite the same way and their effect on the rotor must be 

expected to decrease. On the other hand it is important to 

know just how big is this decrease, for the blades are then 

in forced oscillation and should the damping remains small, 

amplitudes and stress fluctuations may be large. 

But there are very considerable difficulties in 

the way of calculating non-steady aerodynamic effects in 



forward flight.    In particular  convincing analytical,  or 
'closed form' ,  solutions are  scarce because tractable models 
of the flow are hard to devise.     The principal  reasons  are 
the strong three-dimensional character of the flow - the 
blade loading varies rapidly spanwise and the wake is at 
least a skewed helix - and the fact that conditions are not 
steady in either of the two most convenient  frames of reference. 
A subsidiary reason is  the  sheer complication  involved,  for 
the blades  change their incidences at several  frequencies 
simultaneously and there is some degree of coupling between 
frequencies.    Despite these difficulties in recent years 
there have been considerable advances in the  technique of 
calculating rotor blade airloads.    Through the combined use 
of physical reasoning, experiment ^ ^»  ^ '  and large computers, 
K )* \ ) $  \  /there has been a steady but striking improvement 
in our understanding of the problems involved.    But of course 
the various theories are numerical in nature and involve large 
and complex calculations.     As  such they are not especially 
suitable for establishing trends - except in specific design 
cases.    Moreover,  at low tip speed ratios, which are of inter- 
est because fluctuating loads are large in that region,  there 
are considerable problems  in numerical analysis and some of 
the basic approximations are invalid.    Piziali v     ,  for example, 
has shown that numerical calculations of the  influence of the 
shed wake are most sensitive to the number of discrete vortices 
assumed.    There is thus a strong incentive to find some form 
of  'closed*   solution so that trends can be investigated and 
a new feel for the problem established. 

This means reducing the real system  to a model which 
is capable of precise and reasonably simple mathematical form- 



ulation.    It has already been pointed out that this Is not 
easy to do and In fact the conceptual difficulties determine 
the approach,  and colour the procedure,  of this paper.     But 
if the hovering case can be regarded as  solved,  then In prin- 
ciple at any rate It  should be possible to deal with flight 
at very low tip-speed ratios as a short extension, or small 
perturbation, of hovering flight.    Or conversely hovering 
may be regarded as the limit of forward flight at very low 
tip speed ratios.    Thus we ought at least to be able to 
estimate the rate at which conditions change with tip-speed 
ratio in almost hovering flight.    For instance if  /•     is 
a measure of the aerodynamic damping of blade bending oscil- 
lations,  then it should be possible  to estimate the quantity 

(If.? /}jJi)u + Q    •    T^6 purpose of this paper is,  therefore, 
to obtain and analyse a model of the flow through a rotor 
which provides a  Closed form1  solution for the aerodynamic 
damping the vicinity of      It = 0 . 

Now the intention is to regard forward flight as 
an extension of the hovering case,  so  that the first task 
is  to establish a simple mathematical model  for calculating 
the effects of the shed wake in hovering.    This model must, 
of course,  be sufficiently    flexible for forward flight  to 
be introduced without much additional  analysis.    To achieve 
this  it is necessary  to make some sweeping assumptions,   if 
not  in fact bare-faced distortions,  but these do appear  to 
be justified by the results - at least  for the hovering case. 
We therefore begin by examining the important parameters, 
and reviewing previous closed solutions  for    the aerodynamic 
forces on rotor blades which are oscillating in hovering 
flight. 



II.  DEVELOPMENT OF THE FLOW MODEL 

The principal parameters in the problem of the 

oscillating rotor blade in hovering are the number of cycles 

of the oscillation which occur in one revolution of the rotor 

(the frequency ratio), the pitch of the helical wake, the 

number of blades and the phase angle between the oscillations 

of the different blades. The frequency parameter (reduced 

frequency) is of secondary importance although this is only 

because it is small. Frequency ratio is important because 

it determines how the shed vorticity is distributed over 

the helical wake. A little reflection (or see ^ '* ^ O, 

will show that if the frequency ratio is an integer the 

vorticity will have the same value at corresponding azimuth 

points in every turn of the helical wake. Thus the induced 

velocities of the individual turns are cumulative and it 

is this effect which causes the aerodynamic damping to be 

reduced.  For an oscillation at a given frequency ratio the 

relative distribution of vorticity in the sheets from dif- 

ferent blades depends upon the inter-blade phase angle» 

Thus even for oscillations at integral frequency ratios, 

the overall induced velocities will not be cumulative unless 

the blades are oscillating in the appropriate phase - which 

is a function of the frequency ratio and the number of blades. 

The final magnitude of the induced velocity must also depend 

upon how far the wake vortex sheets are from the blades i.e., 

upon the 'pitch1 of the wake which in its turn depends upon 

the inflow velocity and the number of blades. 

The basic difficulty in the determination of the 

forces on a rotor blade is the calculation of the induced 



velocity, for the vortex sheets are spirals and their strength 

Is not only Initially unknown but varies both around and across 

the spiral. So far two models of the flow have been devised 

which avoid or reduce this difficulty. The first Is the two- 

dimensional model of Jones ^ ' and Loewy ^ ', They argue that 

since the aspect ratio of a rotor blade Is high, and most of 

the load must be generated near the blade tips, then it is 

sufficient to treat the blades and their wakes as being plane 

and of infinite span. Thus the effects of the wake curvature 

and spanwise loading variations can be ignored and each turn 

of the spiral wake is represented by a separate, plane, vortex 

sheet below the disc and extending to infinity in front of and 

behind the blade.  The sheets are spaced vertically at a dis- 

tance K/^ which is representative of the pitch of the helix, 

and the distribution of vorticity in the sheets depends only 

on the frequency ratio. One restriction on the usefulness 

of this model is that it can be applied to a multi-blade rotor, 

only if the inter-blade phase angle is assumed.  For our present 

purpose the most important prediciton of these theories is that, 

at an integral frequency ratio, the two dimensional lift curve 

slope for a vibrating blade section is 

2T -rr— ») li+T 
i,e. the 'lift deficiency function' is K/JUTT) 

^5) The second model is due to Millerv / who considers 

a circular rotor with an infinite number of blades.  In this 

case the frequency ratio is restricted to integral values, 

but the influence of finite span and wake curvature is included. 

By considering a rotor which is uniformly loaded spanwise. 



so that trailing vorticity leaves the blades only at the tips, 

the shed and trailing wakes are combined into a circular cylin- 

der whose induced velocities can be calculated.  It is assumed 

that the variations in the induced velocity across the chord of 

a blade can be neglected and lifting line theory is used to calcu- 

late the aerodynamic forces. The lift deficiency function C 

is shown to be 

C = 
l  

(2) 

(3) 

so that the number of blades and the wake pitch appear through 

the ratio ^l / \    • Here VT is the solidity defined as 

(blade area/disc area) and \is  the ratio of the mean inflow 

velocity to the tip speed. 

Equation (2) agrees directly with Loewy's result 

for C if we put 

The striking thing about these two theories is 

that they lead to essentially the same result.  Yet neither 

theory is an extension of the other; the models used are in 

fact complementary since each contains features the other 

cannot reproduce. This agreement could be a meaningless 

chance, for it is possible that the common prediction for 

the lift deficiency function could be quite wrong.  But 

measurements made by Shutler (reported in Jones  ) have 

shown that the predictions of Loewy and Jones are in good 

agreement with experiment, even for the more difficult pro- 

blem of torsional oscillations. Thus the evidence suggests 



that the theoretical values for non-steady aerodynamic forces 

are insensitive to the details of the model on which the cal- 

culations are based. Therefore why should we not obtain a 

very simple model for the hovering case by combining the 

most (analytically) convenient features of the earlier solu- 

tions? If this alternative representation yields the same 

expression as equation (2), for the lift deficiency function 

then, assuming that it has the right flexibility, it should 

provide a very good basis for an extension to forward flight. 

Now the simplest features of Miller's model are 

the use of lifting line theory and the assumption of an infinite 

number of blades. The greatest simplification introduced by 

Jones and Loewy is the idea that the flow is essentially two 

dimensional. If it is permissible to stretch these ideas to 

the limit in combination then we are led to consider a rotor 

which has a very large numberof closely spaced blades each of 

very high aspect ratio. For the purposes of analysis this 

becomes a two-dimensional actuator disc, or surface of dis- 

continuity, exactly similar to that employed in the most 

elementary momentum theories for the propeller. The difference 

is that since each part of the disc is to represent a blade 

which is oscillating or in some way changing its incidence 

with time, then we must postulate that vorticity is generated 

at every point of the discontinuity. 

A great advantage of this model is that the analysis 

for it has already been worked out - or at least the basic 

procedure is established. Actuator disc theory has been 

widely applied to the calculation of flow through cascades. 

Sears ^ 'has used it to study the rotating stall but the 



first real application to non-steady motion appears to be 

due to Whitehead^ ' who used it to calculate the forces 

and moments on an aerofoil in an oscillating cascade. Al- 

though we shall use a different notation, and the lifting 

line theory will replace steady state cascade theory, and 

although we find it necessary to introduce the solidity 

to allow for the finite number of blades in a real rotor, 

the analysis given below is basically due to Whitehead. 

In fact much of the stimulus for the present work came from 

Whitehead's paper. 
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III. HOVERING THEORY 

The actuator disc is shown In Figure 1 as a dis- 

continuity surface lying along the axis of x, i.e., the 

(Infinitesimal) chord lines of the airfoils which make up 

the disc lie along ÖX , It is assumed that the system of 

co-ordinates is rotating with the rotor blades, so that 

these aerofoils are in a free stream of velocity W where (j 

is the angular velocity of the rotor and | is some repre- 

sentative radius. Thus, relative to the point at which it 

was shed, vorticity moves parallel to 0* with velocity i*\ 

and downwards, away from the disc, at the mean inflow velo- 

city V=Xa»| • Above the actuator disc there is no vorticity 

and the air moves uniformly at the mean inflow velocity. 

The flow model of Figure 1 therefore describes the changing 

conditions on a 'reference' blade, represented by the lift- 

ing line at the origin 0, as it travels around the rotor 

disc. In the analysis the actuator disc will be assumed 

to extend to infinity in both directions, i.e. ahead of 

and behind the reference blr.Je. This is a great analytical 

convenience, which has a precedent in the work of Jones and 

Loewy, and can be justified in the following way. At any 

azimuth position the reference blade can be regarded as the 

median line - AB of Figure 2 - of a sector of the true disc. 

On either side of this median the other blades, and the 

vortices shed during previous revolutions, make an angle 

with OB which, due to the wake curvature, increases with 

the azimuth distance from OB. But over some sector the 

other blades and the shed vortices can be taken without 

significant error, to lie parallel to the reference blade, 

and the larger the representative radius I , the greater 



the arc on either side of the median - and therefore the 

linear distance on the model - over which this is sensibly 

correct.  If this arc length is many chords in length, i.e. 

of the order of the blade r.dius, then the linear model may 

be safely allowed to extend to infinity since the remote 

parts, which admittedly are grossly unrepresentative, will 

make no significant contribution to conditions at the origin. 

The equations governing the flow in the x-y plane 

are those of two-dimensional, inviscid rotational fluid motion 

viz, the equation of continuity 

•^i + ^- . O (4) 

^XuKo-N/lui^-l l& (5) 

and the dynamical equations of motion 

where Uj >y  are the fluid velocity components parallel 

to the x and y axes respectively, and P  is the pressure. 

From (4) it follows that there is a stream 

function X such that 

a'si>r '^"ix     - (7) 

The pressure rj may be eliminated from (5), (6) 

to give the vorticity equation 

1F + U'i7*v'lf ~ö 

10 



where "Jx 57" ^9^ 

From (4), (7), (9) it follows that 

(10) 

We now assume that the velocities caused by the shed vorti- 
city and the blade motion are small perturbations of the 
velocities 4M and^frli.e. we put 

a, = oil +0- (u) 

V, * W -l-V (12) 

so that,on neglecting higher powers of the perturbation 
velocities, the vorticity equation becomes 

^-+J^AJ^ (13) 

where   'SJ- ^  ^        and U» 12-   \r ^3^ 

For the mean, i.e. unperturbed, flow the equation of con- 
tinuity is satisfied by making 'V'« A^*»  the same above 
and below the axis. But since continuity across the actua- 
tor disc must also be satisfied by the oscillatory velocity 
components, it is necessary to impose the additional condi- 
tion that 

'•i ^ (14) 

In (14) the first suffix (zero) indicates that 
the perturbation velocity is evaluated at the disc (Vao), 
and in the second suffix, 1 refers to the region above the 
disc and 2 to the region below. The distribution of vorti- 
city in the lower half of the x-y plane - region 2 - depends 

11 



upon the frequency ratio and the inter-blade phase angle. 

In the two-dimensional model with discrete wakes these 

parameters can be regarded as separate, but in the present 

model they cannot be distinguished because the number of 

blades is supposedly infinite. Moreover the concept of a 

phase angle is not so appropriate to the linear actuator 

disc as it is to the real circular rotor. A more suitable 

idea is to assume that a wave of disturbance is propagating 

along the surface of discontinuity. For suppose the vorticity 

"SfO^Oy't)   shed by the reference blade to be of the 

form 

5(0,0,+) = S^cs (++ S^ *m |.t (15) 

Then the vorticity shed by a blade spaced an angle oC 

from the reference blade will be 

^=: 5 a* prt-^-t- S^ln f^t-H) (16) 

where p€. is a phase angle - or more precisely ff is a 

time delay - which in general will be a function of «t and 

p .  But on the linear actuator disc •^-becomes a distance, 

X0 say, so that the time delay«aW|p) must be transformed 

into a dependence upon X0 • This is easily done if we 

put  €■ y*/V» where XJ* iü%\      is a characteristic speed 

which depends upon the frequency ratio and the inter-blade 

phase angle.  Then 

SM^-V^Ä^V'"^'^ (17) 

which repeats itself at intervals of time of "2tt and inter- 

vals of )(# of t^^/p     i*e* it ls the equation of a wave 

travelling along Ox, with speed "T^ . 

12 



The vorticlty Sfy^/V) at an arbitrary point RCXi^J 

can be related to the way in which vorticity is shed from 

the disc, since (see Figure l),the vorticity at Rieft %9 

at an earlier time "t—i* . 

+ v^pfr"-^--»^) (18) 
But
 x.- x-^y/^ (i9) Hence s6w)= v^r^- i^-^d- &.)) 

Equation (20) showf that the vorticity distribution in 

the direction depends upon the value of 6>~u^i,e,  upon the 

absolute propagation speed of the wave which determines the 

inter-blade phase angle. We can, of course, proceed with 

the    analysis without specifying the ratio -A but 

there is a considerable simplification if at this stage we 

introduce the value appropriate to the blade oscillations 

which occur in forward flight. In forward flight, conditions 

at each azimuth are determined only the cyclic variations 

in relative wind speed; they are certainly independent of 

whichever blade happens to be passing through that azimuth. 

Thus the various harmonics of the blade motion must adjust 

their phase so that at each azimuth conditions on any one blade 

are the same as those which obtain on any other blade at that azimuth, 

To see how this is achieved consider any two blades spaced an 

angle«Capart in azimuth, and let some quality (J^(life, blade 

motion, etc.) associated with the leading blade be of the 

form Qi31|cdSfT • Then the same quantity for the second 

blade must be of the fotrm Qff\GötMm'A)  where yj is the 

13 



phase angle which we must determine.  But when T*T4^*1 the 

second blade will replace the first at any chosen azimuth, and 

the variable (äv is now equal to A*s(of~J*+f*1&) ,    Thus 

ß-mpiO/to    and Qftimeplf-tt/ä))   . The angle *6 is essentially a 

distance-measured around the azimuth, so that the distribution of 

inter-blade phase angle is equivalent to a wave travelling around 

the disc at the rotational speed. Alternatively, we note that 

for the sort of oscillations which occur in forward flight, 

an observer outside the rotor disc, but moving with the 

velocity of the hub, sees that any variable such as (^ varies 

from azimuth to azimuth, but that its value at a given azimuth 

is independent of time. To this observer the distribution of 

flt around the disc takes the form of a stationary wave, and 

oscillations of this type can be represented on the actuator 

disc model by putting 4>»&Jt .  This substitution considerably 

simplifies the analysis since it makes the vorticity distri- 

bution independent of V . At the same time it illustrates 

the connection between interblade phase angle and frequency 

ratio, since the same independence of V is observed if the 

blades of a hovering rotor are oscillating, in the appropri- 

ate phase relation, at an integral number of cycles per re- 

volution.  The method can, of course, accommodate arbitrary 

combinations of frequency ratios and phase angles but the 

proper value of IT must then be worked out separately for 

each case. 

The usual application of actuator disc theory is 

not to the calculation of the forces on individual blades, 

but to the determination of the forces exerted by the rotor 

as a whole.  (The reactions of the fluid which balance these 

forces can be calculated very easily by applying the momen- 

tum and energy theorems of fluid mechanics.)  Miller ^ ' 

14 



has in fact used this approach to show that the lift defi- 

ciency function for the response of a complete rotor to 

changes in collective pitch is given by (2), This must be 

one of the first applications of simple momentum theory to 

non-steady motion, (although its use for quasi-steady pro- 

blems has been justified (12)), and it provides an impor- 

tant extension to classical propeller theory. 

But when the incidence changes are periodic this 

approach is not entirely adequate, since only those fre- 

quencies which are simultaneously integral multiples of 

the rotational speed, and of the number of blades, can 

contribute to the resultant force on «-he rotor. It is then 

necessary to use a theory which takes into account the con- 

ditions experienced by individual blades as they rotate. The 

simplest of this type, and the one we shall adopt here, is 

the lifting line theory.  The validity of this theory is 

questionable, particularly for large frequency parameters 

or if the 'in-phase' component of the aerodynamic force is 

required, but these restrictions are quite compatible with 

the other assumptions which have been made. 

Let the circulation about a blade at the repre- 

sentative radius be f^; then the lift per unit span L at 

that radius is 

But KÄl>Ctfal (22) 

Where CL>  ^(_^-   ~£l] (23) 

Here «4is  the mean  incidence, ^ is  the upward displacement 

15 



of the blade section and W is the induced velocity - mea- 

sured positive downwards-of the shed vortex system - all 

evaluated at the representative radius. Considering only 

the time dependent part of  K V* *^} 

K+= -^ {* + V/) (24) 

Note that (24) does not contain the relative wind speed, so 

that the same relation between l^and 1 holds in forward 

flight. Now in an aerodynamic calculation "i must be re- 

garded as known since it is just as much a function of the 

structural, as of the aerodynamic, properties of the blade. 

Thus to calculate the lift as a function of %. it is necessary 

to determine the relation between Kx. and W •  But the 

intention is to use actuator disc theory to evaluate W 

i.e., W is calculated on the assumption that the number 

of blades is infinite, whereas K^is the circulation around 

a single blade with a finite level of loading. We have 

therefore to assume a relationship between the circulation 

about a finite blade and the distribution of vorticity in 

the surface of actuator disc. 

Miller ^ ^overcomes this difficulty by in effect 

assuming the blade loading to be distributed over part of 

the circular disc and the shed vorticity to be distributed 

over the corresponding part of the wake.  This approach is 

not, however, suitable to the linear model in which the fre- 

quencies and phase angles are arbitrary.  Instead we assume 

the loading at a point on the actuator disc to be the same 

as the mean density of loading fg rf.. .' 'it', on an actual 

blade at the corresponding azimuth. This of course gives values 

for the induced velocity W which are far too high, because 

16 



the rotor is being assumed to be much too 'solid'. But since 

the system is linear the increase of scale is the only dis- 

tortion introduced i.e., no phase shifts or additional fre- 

quencies are created by assuming every point of the actua- 

tor disc to be much more heavily loaded than it really is. 

Therefore, when we come to calculate the induced velocity 

at an actual blade, it is merely necessary to multiply the 

actuator disc value for this velocity -  say - by some 

factor which allows for the finite number of blades in the 

real rotor. The obvious factor to use is the solidity 

i.e. W - T W1 (25) 

where KT is the solidity appropriate to the linear actuator 

disc theory, viz. —r- which is the fraction of the represen- 

tative circumference occupied by blade cross-sections. 

To calculate the loading on the reference blade 

we have to determine the pressure difference across it, and 

then relate this pressure difference to the circulation 

about the blade and hence to the vorticity which is shed 

into the wake. 

From the linearised dynamical equations 

f>+y,£^U=-y)/^->"ls)iy (26) 

so that the pressure difference Ar between the lower and 

the upper surfaces at a point on the reference blade is 

&p- yo\(%: »,)-/> lif +^ Vi/fc: ^ k (27) 
Now the circulation around the reference blade is 

so that in accordance with the lifting line theory the 

force per unit span on it is 

17 



l*/»«l/   (««-^'W* (28) 

But  L»    is  also equal  to  the  integral  of  the pressure dif- 

ference across the chord /»      #*- 

... i^f(s^r(^vi^h^'<u'(29) 
/   clirj.        ' 

(30) 

Reversing the order of integration in the last term of (29) 

On comparing (28) and (30) it follows that we must have 

yf1 + Afc»' "Sy = 0 (31) 

But this is precisely true, since (31) merely 

expresses the fact that the changes in the circulation about 

a blade are convected away, with velocity V normal to the 

disc, as vortices of opposite sign, and this idea has al- 

ready been used to establish the distribution of vorticity 

in the wake - see equations (19), (20). 

An alternative form of (31) is 

where S^ is the vorticity shed at the origin i.e., at the 

reference blade. 

Whitehead^  ' arrives at the same result by im- 

posing the condition that the difference in total head 

across the actuator disc is independent of X •  Since 

18 
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P+Afcult   Is the linearised total head this assumption can be 
stated as 

(33) ^to+yUu^O 

and (32) follows at once from (26). 

From (21) and (24) lifting line theory gives for 

the fluctuating part of the lift 

L« .y at tj (f+Vl) (34) 

/, 

where   W*TVV and W    is the normal component of the  in- 
duced velocity at the reference blade i.e. 

w'-^-Vir. from (14) (35) 

Substituting (35) in (34), and equating the two 

expressions for the lift we have 

We next assume that the integral across the chord 

is equal to the value of ^»iT"^»!  at the reference blade 

multiplied by the chord, i.e., it is assumed that the pressure 

difference is constant across a chord length. This seems to 

be a legitimate assumption provided that the frequency para- 

meter is small. 

Hence  'I^U^ «-(a/j^fi 4-r Vj,) (37) 

So far we have three equations, (14), (32), (37) 
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to be solved, in terms of the velocity £ , for the four 

unknowns U~ . VJL-. v/.. V A fourth relation can be ob- 

tained from (10). 

To solve this partial differential equation the 

variables are first put into non-dimensional form by means 

of the transformations 

(38) 

Then substituting equation (20) for the vorticity in (10) 

we obtain 

w    ^r    ■'■*■       (    -»     i 

The solution for p"consists of a complementary function 

plus a particular integral. Above the disc, where there is 

no vorticity, the particular integral is zero. Below the 

disc the vorticity causes the particular integral of (39) 

to vary periodically with £ and the complementary functions 

above and below the disc must posess this same periodicity. 

This if P" is the non-dimensional stream function in the 

upper half of the plan« 

where the Vj^ ^|^  are arbitrary constants which are to 

be determined.  Either the positive or negative exponent 

is possible but the only permissible solution is one which 

remains finite as rl      tends to infinity.  Therefore, since 

is positive above the disc we take 

(40) 

^ 
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The complementary function for the  lower half 
of the HjVj    plane has a similar form, but the positive 
exponent must be used in that region.    Thus the complete 
non-dimensional  stream function below the disc   is 

where      Q^ . Saw are arbitrary as before,     (42)   is easily 
verified by direct  substitution  in  (39). 

Now the normal components of the perturbation 
velocity must be continuous across the actuator disc,  i.e., 
V^^ V^      which becomes 

ftfh ~  [>{), 

(41) 

(42) 

(43) 

where the notation    (  }0    means  that  the derivative  is 
evaluated along the x-axis. 

Making use of the expressions  (41),   (42)  for 

• 1       anc*       f\.        anc* ecIaat^ng  t*16 coefficients of   ^mtv(y~£J, 
CO ^M"V seParately to  zero,   equation  (43)  becomes 

•m (44) 

Sm - $** ^ w 
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la  non-dimensionil form,   the relation  (32)   between 
the  bound and   shed  vortices  becomes 

Mit"Vls>^ 
which,  on  substituting  for r^ £    and   Q     and equati 

efficients of si*V^y-^VcoiVvftj^).   reduces   to 

^+ c^Ai™ A2 

mg  co- 

^-^).-Hf-(l).} 
To solve (49) we have to assume that j is periodic with 

frequency ratio X« 

Hence we put 

Substituting for f~  and K in (4(J) , and equating the co- 

efficients öL Ciln^'»«*Vwe get 

(46) 

(47) 

s^+s^- \^ Ax (48) 
Finall}'  the non-dimensional  form of  (37) ,  which 

is a  form of  the relation between  the  bound vorticity  and 
the circulation around  the blades  becomes 

(49) 

(50) 

(51) 

(52) 
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Thus,in terms of the blade vibrational velocity, we have six 

equations, (44), (45), (47), (48), (51), (52) for the six 

unknowns Jutj^^.C^ ^»n ^»i ^iw  Eliminating the arbitrary 
constants we obtain 

(53) 

(54) 

The fluctuating lift per unit span on the reference 

blade is 

(55) 

Solving (53), (54) for jL.$ and substituting in (56) we 

have finally »/. #    ^ •% 

(56) 

(57) 

where 

"fe^ - f^- ffl (58) 

Now the expression . ^ 

is the non-dimensional form of the blade vibrational velocity, 

so that the lift force is out-of-phase with this velocity 

by an amount which depends upon ^L  . But /V^i-S usually 

very small, and if we neglect terms in  \^ and ignore ^ 

a first approximation to (57) is 

23 



[-z^^^+V**^]        (^ 

Thus the lift primarily is proportional, but of opposite 

sign, to the vibrational velocity i.e., it exerts a damping 

force on the oscillation.  This approximate result can also 

be derived more quickly by eliminating the unimportant cross- 

coüplings     \ $>ic     fr0m ^53^, and ^iSi« fr0m ^/^' 

The more complete formula (57) shows that there 

is in fact a component of force in phase with the displace- 

ment i.e., the aerodynamic forces also supply a stiffness. 

However, this term can be ignored without difficulty since 

it will make a negligible change to the total stiffness of 

n blade, and the lifting line theory is in any case not 

accurate for the 'in-phase' components. 

The  term TnTxXTj   is the lift deficiency func- 
tion for the oscillations.  Observing that (T^**? ^1 this re- 

C* (1) as was obtained by Loewyv ' 

and Miller^. 

We have thus developed a method of calculating 

the lift deficiency function which gives the same results as, 

and is easier in use than, earlier theories.  The next step 

is to extend the calculation to forward flight and this means 

stretching the model to its utmost, for we are restricted to 

dealing with time-varying problems in two-dimensions. Some 

indulgence has therefore to be granted when reading the 

following sections, but it is hoped that the approach will 
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be taken seriously for the main purpose is not so much to 

provide numerical results, as to establish a new vehicle, 

or framework, of understanding for the forward flight prob- 

lem.  Despite its limitations the theory bears many of the 

hallmarks of a forward flight analysis - complications, the 

existence of many frequencies, differential equations with 

periodic coefficients, inter-harmonic couplings, etc., some 

of which have not been considered before.  Furthermore a 

perturbation procedure is used - not for the first time in 

rotor analysis - but in an aerodynamic, as distinct from a 

dynamic, calculation.  The use of these techniques as a means 

of simplifying rotor analysis has recently been advocated 
(13) by Youngv / and it is hoped that this example of their use 

will provide a basis for future development. For example it 

may be that the best approach to the calculation of rotor 

loadings and noise at low tip speed ratios is to expand the 

wake geometry in powers of the tip-speed ratio - as well as 

other parameters. 
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IV.  EXTENSION TO FORWARD FLIGHT 

4, 1 Forward Flight Model 

The principal differences between hovering and 

forward flight are that the inflow velocity and the tan- 

gential component of the relative wind speed vary period- 

ically as a blade rotates, and that the blades are in forced 

oscillation. The  relative wind speed variation has a period 

of once per revolution, but the induced velocity and the 

blade motion may have significant content at all frequencies 

up to ten per revolution. 

The induced velocity variations are easily intro- 

duced into the model of Section 2, because the lifting line 

theory does not recognise a difference between the velocity 

of the air and the velocity of a blade normal to the disc. 

Hence we merely replace the velocities j^s | #'2||/^of the 

hovering analysis by the relative air velocities V «\ ((ill 

^.Jl^^Jl^v where /^Jijl  is the (non-dimensional)V\  harmonic 

component of the induced velocity. The summation over n is 

necessary because so many harmonics are present and, as we 

shall see below, there is some mutual interference between 

them. For the purposes of the present analysis we must as- 

sume that the "XwVp) are ^o^11 from some other source, and 

that they are not affected by any blade motion which they 

produce.  This is probably a legitimate assumption since,as 

Miller has pointed out^ ', these induced velocity varia- 

tions are primarily due to the shape and mean strength of 

the trailing vortex system, parameters which arc fixed by 

performance considerations. 

But though the induced velocity is assumed to 
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ciuse a variation ot incidence around the disc, we shall as- 

sume in the theory that shed vorticity is convected away 

from all points of the disc at the mean induced velocity. 

This assumption of a 'rigid' wake is certainly not valid, but 

not much is yet known about the movement of vortices after 

they have left the blades (for a review of some of the data 

see (15)). When this behaviour is better understood it will 

be a straighcforward, if complicated, matter to include it 

in the actuator disc theory. Until that time, however, thc 

rigid wake approximation is probably one of the weakest parts 

of the present analysis. 

The periodic wind speed variation has two effects. 

The first, which through the lifting line theory is easily 

absorbed into the actuator disc analysis, is that there are 

periodic lift changes even if the circulation around a blade 

is constant with time. The second effect is that because 

the wind direction is changing, the associated shed vorti- 

city is convected away from the blade in a direction, and 

at a speed, which depends upon the position of the blade in 

azimuth. Thus if a blade is on the advancing side shed vor- 

ticity is convected away, at right angles to the blade, at 

a speed which is greater than that due to rotation alone, 

and if the blade is on the retreating side the convection 

is reduced. For a blade lying fore and aft the convection 

velocity normal to the blade is unaffected, but shed vorti- 

city will move parallel to the blade towards the rear, and 

perhaps out of, the disc. Accounting for this convection 

provides the main conceptual difficulty of our model. 

In forward flight, therefore, conditions are not 

steady even in a rotating frame of reference, and at a given 
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instant these conditions vary from blade to blade.  It follows 

that to represent forward flight on the actuator disc model, 

either these features must be incorporated in some way or 

they must be shown to be unimportant. Now obviously the 

variation of relative wind speed with azimuth cannot be 

ignored, since this is one of the essential differences 

between forward and hovering flight, but it is probably quite 

reasonable to neglect its change from blade to blade of the 

actuator disc model. In fact to be consistent with the as- 

sumptions of the hovering theory, this change should be ne- 

glected.  The reason is that the actuator disc model sup- 

posedly represents that part of the flow which is within 

a few chords length of the reference blade.  (It will be 

remembered that - see Section 2 above - the linear model is 

allowed to extend to infinity only as an analytical conven- 

ience.)  At the representative radius a few chords length 

corresponds to a small arc of azimuth, so that within the 

compass of the model the variation in relative velocity is 

small and can be neglected, i.e. it is assumed that the 

relative wind speed at every point of the actuator disc is 

the same as it is on the reference blade, but of course this 

relative speed varies with time. Exactly the same sort of 

argument was used by Jones^ ^and Loewy^ 'to justify the 

neglect of the curvature of the wake in the hovering theory. 

These approximations would not be valid if the tangential 

velocity varied many times per revolution. Nor, by analogy, 

Is the argument justifying the neglect of wake curvature in 

hovering valid if the frequency of incidence change is many 

cycles per revolution, for then the zone of influence of 

the shed vorticit;' cannot be considered as limited to a few 

chords length on either side of the reference blade.  But 

it is clear from the sketch of Figure 2 that the reduction 
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in induced effects due to wake curvature, and again by analogy, 

the variation in tangential wind speed over quite a large por- 

tion of the disc, depend only on the semi-included angle sub- 

tended at the hub by the arc at the representative radius. 

These reductions and variations will be small for a semi- 

angle of up to 30 i.e. a total arc length of about one blade 

radius which is sufficiently largo to ensure that all the 

important induced effects are adequately represented by a 

linear model. 

The general convection of vorticity behind, and 

to the rear of, the disc means that a blade may never again 

pass close to a vorte:: which it shed in an earlier revolu- 

tion, or that if it does so the shed vortex will probably 

be no longer parallel to the blade. This point is illustrated 

in Figure 2. AA represents a vortex sbed from a blade in the 

position OC,  .ssuming the rotor to be fixed in space and 

air to be flowing past it at the forward speed TJL   the vor- 

tex AA will move to the position A'A' in the time it takes 

OC - or some other blade - to reach the position OB.  But 

A'A' is substantially at right angles to OB so that its 

influence on OB will be very different from that of AA on OC. 

Thus in forward flight the induced effects of a 

vortex vary with time because the angle which it makes quite 

different angles with successive blades.  So far no method 

has been devised of including this feature in the two-di- 

mensional actuator disc model, but it is thought that the 

error in omitting completely will not be too great.  The 

reason is that the induced effect of a particular vortex 

diminishes with time anyway since the downwash moves it 

away from the disc.  In reality, particularly at low tip 
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speed ratios, the vortex A'A' would be well below the disc 

at the instant shown and its absolute contribution to the 

induced velocity would be small. This particular considera- 

tion does, however, suggest that this model of the flow is 

only likely to be applicable to tip speed ratios  —A- — 

which are less than, or about equal to, the mean inflow 

coefficient   '\m 

In practice the most likely source of error will 

be in the estimation of the effects of vorticity shed when 

the blades lie more or less along the line of flight. Since 

the number of blades is limited, o  finite time must elapse 

before the next blade enters the field of influence of such 

a shed vortex. During that time the vortex may have moved, 

parallel to itself, perhaps out of the disc or out of the 

region of substantially two-dimensional flow, and it may 

never affect the next blade at all.  (Of course, if the blade 

were really of infinite radius and the flow strictly two-di- 

mensional, moving the vortex parallel to itself would make 

no difference.) It is possible then that the theory will 

over-estimate the influence of the shed wake in these regions, 

but three dimensional and non-rigid wake effects are likely 

to be of at least equal importance, so there is little point 

in attempting to refine the theory at this stage. 

Since this is a two-dimensional model, spanwise 

loading variations cannot be included and the effects of 

wake curvature, distortion and inclination due to forward 

speed have already been rejected or ignored. The final 

actuator disc model for forward flight is therefore the 

same as that for the hovering case except that the relative 

tangential and induced velocity components are allowed to 
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vary with time.    Thus only these   'three-dimensional'  effects 
which can be expressed as time variations are included, 
and the best justification for this whole elementary approach 
is that it is really only meant  to apply to  the case of van- 
ishingly small U , 

4, 2 Forward Flight Theory 

are 
As in the hovering case the governing equations 

^--l-^'-3 (60) 

>X   >/_   v* 
where   *\t 

Ä ^y » vl    JX 

"iC     iY     iS" 
•ff+U^+V,^ (61) 

(62) 

Once again these equations are linearised, but 
now we put 

1,- of ( I+«»■.« f)+" VL (63) 

V', » "X.^^+X (64) 

where JL^VL/^}]   is the tip speed ratio and  /^ is the 
mean inflow velocity coefficient. Putting equations (60) - 
(65) in non-dimensional form by means of the transformations 
(38), equation (60) becomes 

^^--^ 
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^+vV° 
plus etc., for higher powers of   I/U   than the first. For 

the rest of this analysis only the first power of IL  will 

(67) 

and equation (61) becomes 

^f(/f/^0^-AH.O (66) 
To solve (66) we expand p in ascending powers 

of /(_  i.e. , we put 

This is a common procedure in the treatment of differential 
/16) equations with periodic coefficientsv  , and it has many 

applications to the helicopter in forward flight (see Jones 

and Shutler^17)). 

Substituting (67) in (66) and writing the whole 

as an expansion in powers of XL we obtain 

If (68) is to be valid for all values of/ij/?)*)» then the 

coefficient of each power of dL  must be separately zero. 

Thus (68) becomes the following set of successive partial 

differential equations 

(69) 

(70) 
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be retained.  This should be sufficient to give the rate 

of change with i^ as XL tends to zero, and the whole approx- 

imation does not warrant any further complication« 

It will be seen that the equation for Ais iden- 

tical with the equation obtained from the vorticity distri- 

bution in the hovering case. The difference is that in 

forward flight many frequencies will be present in the in- 

duced velocity and blade motion and these will, of course, 

appear in the vorticity distribution. 

Hence we put 

i=I^c^iH^Zi^ n(H) (7i) 
and at the same time 

X   *  ^ VI (72) 

Z-I^M' + I^V^f 
The substitution (71) makes ^independent of "V , which is 

as it must be since the inter-blade phase relationship is 

such as to make i)»^ for each frequency. 

Substituting (71) in (70) the equation for dx 

becomes 

so that  ^=C0«^[R^«V\(^)-Ji^»fW        (74) 
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Thus to a first order in i/L 

^Ei^^V^^H^ (73) 

frj*    (75) is now substituted in the partial differen- 

tial     ion (65) to give the non-dimensional stream func- 

tion      Since (75) is independent of V? the complete 

solution for Fl i-s 

4-' 
(76) 

where the complementary function has been chosen to ensure 

finite velocities at infinity. 

Since there is no vorticity above the disc 

\        ^ )? 

The equation of continuity at the actuator disc is 

which when evaluated at the reference blade becomes 
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r» r» r» (79) 

^        Similarly the equation (32) which expresses the 

condition that changes in circulation around a blade are 

convected away normal to the disc becomes 

iyfcn+o.-., 4 +^(VSj -x ^     (80) 

Finally the equation (37) connecting the lifting 

line and actuator disc theories for the non-steady part of 

the motion becomes 

* * (81) 

In each of equations (79), (80) , (81) the various 

frequencies are collected together, and the coefficients of 

jtl^V^KCM 1i\K   are equated  separately to zero to give six 

equations for  Cy^jS^j <^,Sxmy   J^ , Jvu 

in terms of  X*VLI ^m^  etc* Eliminating the arbitrary 
constants the following equations are obtained 

_ 2- tU+x^J 
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In arriving at (82), (83) terms ini/A have been neglected 

on the grounds that XL and ^ are of the same order, and 

terms in  LL  have already been ignored as too small. 

If we put /(pö.*)^ A*? in (82), (83) the equa- 

tions reduce to equations (53) , (54) for the vorticity 

components in the hover.  To 0(M)  therefore the circula- 

tion at a particular frequency ratio >((, which derives from 

(83) 

since 

depends upon the quantities -SäIMJ ) J^ni+i) i»e»> upon the 

circulation at adjacent frequency ratios. This particular 

harmonic coupling has it origins in the varying convection 

speed of the vorticity. When the lift is calculated there 

is an additional inter-harmonic coupling since 

l^fJiUf^X^V) (83) 

Therefore, whereas in hovering it is possible to relate the 

lift at a given frequency ratio directly to the blade motion 

at that frequency ratio, in forward flight this cannot be 

('one.  Instead it is necessary to carry the calculation one 

stage further and solve the dynamical equations of motion 

for the blades, taking into account a whole spectrum of 

modes and harmonics. 
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V.    DISCUSSION 

A comparison of Equations (82) and (83) with equa- 

tions (53), (54) shows that forward flight affects the shed 

vorticity - and hence the circulation around the blades - 

directly through the induced velocity variations, but it 

also introduces a cross-coupling.  Thus, for example, the 

third harmonic components of circulation around a blade are 

determined by the third harmonic components of the relative 

induced velocity, together with some contribution from the 

second and fourth harmonic circulation components. These 

inter-harmonic couplings are indeed proportional to M- but 

a closer inspection of Equations (82) and (83) shows their 

effects to depend upon the much larger quantity II.^ •  It 

seems unlikely therefore that the effects of inter-harmonic 

coupling can be ignored although it may well be that this 

model of the flow inflates their influence.  On the other 

hand, the inter-harmonic coupling in the lift which arises 

from the interaction between the fluctuations in relative 

wind speed and the variations in the circulation - sec 

equation (85) - is only proportional to  Ü,. 

The numerical significance of the couplings is 

not easy to see because the individual circulation components 

should really be obtained by solving a Ir.rgc number of sim- 

ultaneous equations.  But some special cases and features 

can be examined and these are most illuminating. 

In lifting line theory is employed, the blade 

airloads at a particular frequency ratio are proportional 

to the right-hand sides of (82), (83), After solving the 

equations the constant of proportionality is found to be 
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the effective lift curve slope or real part of the lift de- 

ficiency function.  For rotor blades this is usually regarded 

as being a function only of  !(,  and \ ,  But if the inter- 

harmonic coupling is large, equations (Ü2) and (Ö3) show that 

the constant of proportionality is no longer simple.  It must 

depend upon the circulation content at other harmonics, which 

in turn depend upon the blade motion and the induced velo- 

city distribution at these harmonics.  Our first conclusion 

then is that, within the limits of velocit3' of the present 

theory, it is not legitimate to isolate the lift curve 

slope from the blade motion and induced velocity.  More 

precisely QC^A^j can only be defined if the proportion of 

harmonics in  ^  is specified. 

The second conclusion we can draw concerns the 

damping cf blade motion.  Since Equations (82) and (83) are 

linear, we can consider the effect of a small disturbance 

in the blade motion separately.  If this is confined to a 

single harmonic, say the >^_ so that g/ . *fc»«\c i ^^ ' 

are all zero then, because of the cross-coupling, the cir- 

culation at the representative section will contain all 

harmonics.  The equations for these additional harmonics 

will be of the type 

^{i4H^+-£}Wk} 
The proportion of j^        j5^ t%t will depend upon 

ß—     and the magnitude of the ^^L t^« \ but if the 

theory is to be valid the  ^(fa*x\   etc«> must be insig- 

nificant.  Now suppose the disturbed blade motion to take 

(86) 

(87) 
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place at a frequency ratio ^ i.e., the natural frequency 

of the blade is close to "^ cycles per revolution.  This 

means that the generalised inertia force at this frequency 

almost balances the generalised elastic force, hence the 

generalised aerodynamic force must be small. Therefore in 

the present model "J^ must be small and, from (86), (87) 

Wi     «..Yfoiixwill be even smaller. Very roughly 

JK.)C" ^^ 

(88) 

(89) 

Substituting (88), (89) and the corresponding 

expressions for ^^.A^yttHVa^nt0 (^2) , (83) shows that the 

'correction' to ^ from the interharmonic coupling will be 

of order f^vO and therefore negligible. Equations (82) 

and (83) then become identical with the hovering equations 

(53) , (54) which lead directly to the result C^^/kVlT for the 

lift deficiency function. We conclude, therefore, that 

the damping of natural oscillations at a particular fre- 

quency is unaffected by U, for small Ü 

This result may seem rather surprising, but there 

is some experimental evidence to support it, and it can be 

justified theoretically in another way. The experimental 

evidence is due to Ham, Moser and Zvarav  .  They measured 

the flapping response of the blades of a model helicopter 

rotor to a vertical excitation of the hub.  In the hovering 

case, for low blade pitch angles, this response showed, in 

accordance with 'wake' theory, a sharp peak at a frequency 

of two cycles per revolution (the rotor was of the two-bladed. 
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hinged type).  In forward flight this peak persisted even 

at ifs-^L^O« Theoretical justification* can be got by arguing 

that the flow model and the real rotor system are reversible, 

i.e., it does not matter whether Z([_ is positive or negative. 

Hence a plot of the real part of the Theodorsen function 

against U  , such as that given by Miller^ ^must be symmetric 

about tne axis J^O , i,e.ßX4/*/W ss0 ancl the.  change with 
JJL      can at most be of order jjf-        t    This result is sketched 

in Figure 3, superimposed upon the results of Miller's cal- 

culation.     Of course the sketch is conjecture - except 

for the slope at JtF-Q    -  but the horizontal part has been 

projected to if^ö.OS since the limit of this theory is/J$\ . 

Away from a natural frequency though this result 

may not hold; there is in fact a difficulty in the concept 

of clamping in such cases.  Usually damping is taken to mean 

the coefficient of a velocity - in this case at a particular 

frequency ratio or harmonic >»\.  This quantity may perhaps 

be unchanged by forward motion but an isolated harmonic can- 

not exist.  The inter-harmonic coupling will ensure that 

blade motion and or vortex shedding will occur at other fre- 

quencies.  It will be necessary to do work on the system 

to maintain these motions and manufacture the vorticity. 

Hence a more appropriate measure of the damping would prob- 

ably be the energy dissipated in maintaining an oscillation 

and this will certainly increase with i/ , 

When we come to consider the more important prob- 

lem of forced oscillation due to the induced velocity var- 

iations, we have to recognise that resonance is difficult 

*I am indebted to Dr. Static of the Cornell Aeronautical 
Laboratory for this explanation. 
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to avoid in practice. Now the generalised aerodynamic force 

is zero at resonance, and if there is no inter-harmonic 

coupling tne blade incidence must be effectively zero at 

the resonant frequency.  This means that the blade bends 

in sympathy with the induced velocity variations so that 

there are no net incidence changes at that frequency.  But 

if the inter-harmonic coupling is strong, then without solv- 

ing the equations we cannot say what the blade motion will 

be.  The circulation component at the resonant frequency 

will be small, probably much less than at the adjacent fre- 

quencies (since they will not be influenced by resonance)• 

Therefore it is likely that the inter-harmonic coupling 

terms will determine the blade motion at resonance. This 
(14") possibility was forseen by Millerv '. 
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VI.     CONCLUSIONS:  FURTHER DEVELOPMENTS 

A  comparatively crude model of the flow through 

a rotor has been developed for estimating the influence of 

the shed wake at low tip-speed ratios.  It gives results 

which are in agreement with more refined theories for the 

hovering case, and there are reasonable grounds for expect- 

ing the model to be valid at lease as JjfaQ.     Therefore, al- 

though this particular application leaves something to the 

imagination, it is not felt that any further apology or 

justification for its use is necessary.  Ä well-established 

result from hovering theory has been reproduced, and there 

is adequate physical explanation for many of the theoretical 

features which are brought out. For instance the parameter X/f 

appears quite clearly as a measure of how much the wake is 

'filled' by shed vorticity, the fact that (Ui/wiLJfl 0 can 

be dedaced from quite separate considerations of symmetry, 

and even the dependence of the inter-harmonic coupling on 

the product of tip speed ratio and harmonic number can be 

explained. 

The extension to forward flight proceeds by an 

expansion in powers of Uy  but analysis shows that the ex- 

pansion really should be in powers of iOn. ; JVC here is the 

(integral) order of vibration or frequency ratio. Because 

of this, it is found that the inter-harmonic couplings, 

i.e., the generation of aerodynamic forces at one frequency 

by circulation changes at another, are surprisingly large. 

Their influence is strong enough to suggest that the simple 

idea of a lift curve slope independent of the details of 

the blade motion and induced velocity variatl    ihould 

be abandoned.  In particular, the interharmo      plings 
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must be taken into account if one or more blade natural fre- 
quencies lie close to an integral number of cycles per revo- 
lution. 

For oscillations at a single frequency at or close 
to a natural frequency, the effect of interharmonic couplings 
can be ignored. It is then found that the damping of the os- 
cillations, defined as the aerodynamic coefficient of a blade 
bending velocity at that frequency, is unaffected by /£-. 
This may account for the apparent persistence of shed wake 
effects as the tip speed ration increases. 

But  care  is necessary  in interpreting damping  in 
this  case,   since  the oscillation at a single frequency   is 
accompanied by  vortex shedding at  the coupled fiequencies. 
Work will undoubtedly have  to be done on  the flow to pro- 
duce  the shed vorticity and this will  appear ar> an  energy 
dissipation somewhere else.     In wind tunnel axperiments, 
where model rotors  are forced to  oscillate b    some  external 
agency,  there will  be  three possible  sources of energy  viz, 
the  tunnel fan motor,   the rotor drive  and the exciter power 
supply.    Hence  it may not be strictly  valid to  attribute 
large oscillations  to  small  aerodynamic damping unless 
measurements of  the  total power consumption are made. 

It remains now to exploit this concept further, 
cither by straightforward application of the actuator disc 
to other problems or, perhaps better, by an extension of 
the use of momentum and energy methods. These cannot be 
expected to yield detailed answers but they do highlight 
those features which a more elaborate calculation should 
include.     In  the  spectrum of  techniques vh ich are  generally 
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available dicy lie somev.mere betv/een dimensional analysis 
and numerical solution, and as such they should provide a 
good guide  to  future  exoerirnental work. 
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